首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26117篇
  免费   2851篇
  国内免费   1570篇
工业技术   30538篇
  2024年   47篇
  2023年   364篇
  2022年   595篇
  2021年   780篇
  2020年   842篇
  2019年   811篇
  2018年   813篇
  2017年   927篇
  2016年   978篇
  2015年   1055篇
  2014年   1600篇
  2013年   1674篇
  2012年   1929篇
  2011年   2061篇
  2010年   1451篇
  2009年   1541篇
  2008年   1602篇
  2007年   1835篇
  2006年   1752篇
  2005年   1281篇
  2004年   1057篇
  2003年   893篇
  2002年   774篇
  2001年   689篇
  2000年   540篇
  1999年   472篇
  1998年   377篇
  1997年   338篇
  1996年   277篇
  1995年   256篇
  1994年   189篇
  1993年   163篇
  1992年   132篇
  1991年   85篇
  1990年   60篇
  1989年   77篇
  1988年   35篇
  1987年   40篇
  1986年   19篇
  1985年   22篇
  1984年   9篇
  1983年   17篇
  1982年   13篇
  1981年   8篇
  1980年   17篇
  1979年   18篇
  1977年   4篇
  1959年   4篇
  1957年   3篇
  1955年   3篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
1.
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.  相似文献   
2.
In this study the effects of high temperature and moisture on the impact damage resistance and mechanical strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates were exposed to either a 1050°C isothermal furnace-based environment for 30 consecutive days at 6 h a day, or 95% relative humidity environment for 13 consecutive days at 67°C. Low velocity impact, tensile and short beam strength tests were performed on both ambient and environmentally conditioned laminates and damage was characterized using a combination of non-destructive and destructive techniques. High temperature and humidity environmental exposure adversely affected the impact resistance of the composite laminates. For all the environments, planar internal damage area was greater than the back side dent area, which in turn was greater than the impactor side dent area. Evidence of environmental embrittlement through a stiffer tensile response was noted for the high temperature exposed laminates while the short beam strength tests showed greater propensity for interlaminar shear failure in the moisture exposed laminates. Destructive evaluations exposed larger, more pronounced delaminations in the environmentally conditioned laminates in comparison to the ambient ones. External damage metrics of the impactor side dent depth and area directly influenced the post-impact tensile strength of the laminates while no such trend between internal damage area and residual strength could be ascertained.  相似文献   
3.
4.
ZnO rice like nonarchitects are grafted on the graphene carbon core via a rapid microwave synthesis route. The prepared grafted systems are characterized via XRD, SEM, RAMAN, and XPS to examined the structural and morphological parameters. Zinc oxide grafted graphene sheets (ZnO-G) are further doped in β-phase of polyvinylidene fluoride (PVDF) to prepare the polymer nanocomposites (PNCs) via mixed solvent approach (THF/DMF). β-phase confirmation of PVDF PNCs is done by FTIR studies. It is observed that ZnO-G filler enhances the β-phase content in the PNCs. Non-doped PVDF and PNCs are further studied for rheological behavior under the shear rate of 1–100 s−1. Doping of ZnO-G dopant to the PVDF matrix changes its discontinuous shear thickening (DST) behavior to continues shear thickening behavior (CST). Hydrocluster formation and their interaction with the dopant could be the reason for this striking DST to CST behavioral change. Strain amplitude sweep (10−3% -10%) oscillatory test reveals that the PNCs shows extended linear viscoelastic region with high elastic modulus and lower viscous modulus. Effective shear thickening behavior and strong elastic strength of these PNCs present their candidature for various fields including mechanical and soft body armor applications.  相似文献   
5.
为获得设计需要的巨型水轮发电机剪断销的剪切力,得到剪切力波动受控的批量剪断销,通过拉伸试验、冲击试验、硬度试验和剪断销剪切试验等讨论了全尺寸剪断销剪切试验的可行性,分析了剪切试验时正常剪断和非正常剪断的剪断销材料性能差异,探究了剪断销的剪切力质量稳定性控制方法。结果表明:控制剪断销料坯的布氏硬度波动,可实现间接控制剪断销剪切强度的波动;通过试验总结的六步法可达到控制批量剪断销质量和剪切力波动的目的。  相似文献   
6.
The sustainable reduction of greenhouse gas emissions from road transport requires solutions to achieve net-zero carbon dioxide emissions. Therefore, in addition to vehicles with electrified powertrains, such as those implemented in battery electric of fuel cell vehicles, internal combustion engines fueled with e-fuels or biofuels are also under discussion. An e-fuel that has come into focus recently, is hydrogen due to its potential to achieve zero tank-to-wheel and well-to-wheel carbon dioxide emissions when the electrolysis is powered by electricity from renewable sources. Due to the high laminar burning velocity, hydrogen has the potential for engine operation with high cylinder charge dilution by e.g. external exhaust gas recirculation or enleanment, resulting in increased efficiency. On the other hand, the high burning velocity and high adiabatic flame temperatures pose a challenge for engine cooling due to increased heat losses compared to conventional fuels. To further evaluate the use of hydrogen for small passenger car engines, a series production 1 L 3 cylinder gasoline engine provided by Ford Werke GmbH was modified for hydrogen direct injection. The engine was equipped with a high pressure external exhaust gas recirculation system to investigate charge dilution at stoichiometric operation. Due to limitations of the turbocharging system, very lean operation, which can achieve nitrogen oxides raw emissions below 10 ppm, was limited to part load operation below BMEP = 8 bar. Thus, a reduction of the nitrogen oxides emission level at high loads compared to stoichiometric operation was not possible. At stoichiometric operation with external exhaust gas recirculation engine efficiency can be increased significantly. The comparison of stoichiometric hydrogen and gasoline operation shows a reduced indicated efficiency with hydrogen with significant faster combustion of hydrogen at comparable centers of combustion. However, higher boost pressures would allow to achieve even higher indicated efficiencies by charge dilution compared to gasoline engine operation.  相似文献   
7.
This study investigates the effect of intermediate stress ratio (b) on the mechanical behaviour of granular soil in true triaxial tests. A CFD-DEM solver with the ability to model compressible fluid and moving mesh has been developed and calibrated based on existing experimental test results on Nevada sand. The effect of b on the undrained true triaxial test, which has been neglected in the literature, was investigated using a reasonable number of models. The effects of the initial confining stress and initial void ratio also have been studied. The developed model was used to calculate the hydrodynamic forces on the particles and evaluate the ratio of the particle–fluid interaction force to the resultant force on the particles. It has been demonstrated that, in numerical studies, the effect of these forces cannot be neglected.  相似文献   
8.
According to the International Energy Agency, only a small part of the full potential of biomass energy is currently used in the world. The annual amount of agricultural waste in the Russian Federation is estimated at about 152 million tons, and the energy potential of animal waste is 201 PJ/year. Anaerobic digestion is an efficient method of converting organic waste into renewable energy sources. Previously, the positive effect of pretreatment of various organic feedstocks in vortex layer apparatus (VLA) on the characteristics of anaerobic digestion and energy efficiency was shown. Currently, there is a significant interest in the world in obtaining biohydrogen from organic waste using the dark fermentation (DF) process. During pretreatment in the VLA, the iron working bodies are abraded and iron particles are introduced into the feedstock of the DF reactor. This may have a positive effect on the production rate and yield of hydrogen, which has not been previously studied. This work is aimed at evaluating the possibility of using the VLA as a method for pretreatment of a dark fermentation feedstock for the intensification of biohydrogen production. To achieve this goal, an experimental setup was constructed. It consisted of a 45 L DF reactor, a VLA and a process control system to collect data on the DF process parameters every 5 min. At a hydraulic retention time in the DF reactor of 24 h and in the VLA of 30 s, the hydrogen content in the biogas increased from 51.1% to 52.2%. At the same time, the pH increased from 3.85 to 4.8–4.9, and the hydrogen production rate increased by 16% to 1.941 L/(L day). The hydrogen yield was 80.9 ml/g VS. Thus, pretreatment of the feedstock in VLA can be an effective way to intensify the DF process; however, further study of the VLA operating modes is required in order to optimize the concentrations of iron particles introduced into the feedstock for the most efficient continuous production of dark fermentative biohydrogen.  相似文献   
9.
With the recent advances of direct injection (DI) technology, introducing hydrogen into the combustion chamber through DI is being considered as a viable approach to circumvent backfire and pre-ignition encountered in early generations of hydrogen engines. As part of a broader vision to develop a robust numerical model to study hydrogen spark ignition (SI) combustion in internal combustion (IC) engines, the present numerical investigation focuses on mixture preparation in a hydrogen DI SI engine. This study is carried out with a single hole injector with gaseous hydrogen injected at 100 bar injection pressure. Simulations are carried out for high and low tumble configurations and validated against optical data acquired from planar laser induced fluorescence (PLIF) measurements. Varying mesh configurations are investigated for the impact on in-cylinder mixture distribution. A particular emphasis is placed on the effect of nozzle geometry and mesh orientation near the wall. Overall, the computational model is found to predict the mixture distribution in the combustion cylinder reasonably well. The results showed that the alignment of mesh with the flow direction is important to achieve good agreement between numerical analysis and optical measurement data.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号